Protocol Specification, Testing, and Verification VIII

S. Aggarwal and K. Sabnani (Editors)

Elsevier Science Publishers B.V, (North-Holland) 399
© IFIP, 1988

EXECUTING LARGE LOTOS SPECIFICATIONS

R. Guillemot, M. Haj-Hussein and L.Logrippo

University of Ottawa
Protocols Research Group

Compauter Science Department
Ottawa, Ont. Canada KIN 6N5
E-mail: IMLSL@QUOTTAWA BITNET

The features of the University of Ottawa LOTOS interpreter are discussed and it is
shown how they can be used in order to simulate a full-sized constraint-oriented
LOTOS specification, the specification of the OSI Transport Service Provider.
Some problems related to the design of such interpreters are also discussed.

1. INTRODUCTION

In a number of previous papers [LP][LOG][LSU] wc discussed the usefulness of the concept of
prototyping complex distributed systems by means of executable specifications. In this paper,
we report on our experiences towards prototyping a real system, the OSI Transport Service
(TS) provider, using the University of Ottawa LOTOS interpreter. We discuss several difficul-
ties that arc encountered in this type of task, and some possible solutions, most of which have
already been implemented in our interpreter.

2. THE UNIVERSITY OF OTTAWA LOTOS INTERPRETER

The current version of the interpreter has evolved from the structure described in [LOBF].
First, the LOTOS source is submitted to syntax and static semantics checks according to
[ISO1]. If the source is found to be correct, it is translated into an ‘internal’ format which rep-
resents the source in the form of a Prolog list, in a 'flattened’ name space. This representation
is faithful to the source to the point that the latter can be recovered from the internal represen-
tation, with the exception of some details such as process functionality, comments, justification,
spacing, etc. Therefore, the user never needs to be aware of the internal representation. Dur-
ing this phase, abstract data type equations are oriented as rewriting rules [FEH]. These func-
tions, which constitute the "compiler” part of the interpreter, are programmed in C.

The interpreter runs on the internal representation. It implements in Prolog the LOTOS
dynamic semantics specified in [ISO1]. Whenever a value expression has to be evaluated, the
value expression evaluator is called. The latter evaluates value expressions by using the rewrit-
ing rules according to a "leftmost-innermost” strategy [FEH]. Our name for the interpreter is
ISLA, or Interactive System for LOTOS Applications.

The main feature of the interpreter is to allow step-by-step execution of LOTOS specifica-
tions. At each step, the user is prompted with a menu of possible "next actions”. Each action
is displayed with the line number(s) that describe it in the specification (in square brackets in
the following listings). The user choses the next action to be executed and, if this action
involves a choice of data, he/she is prompted to provide the choice. Choice of data is required
not only by actions involving the environment (in which case the user is asked to provide the
role of the environment), but also by internal actions where data is to be generated nondeter-
ministically.

400 R. Guillemot et al

At any point during simulation, the user can ask to see the current behavior ¢xpression,
which deseribes the current state of the LOTOS machine, and the behaviors that will result by
the exccution of cach one of the possible "next actions”. This will be printed in external
LOTOS format, rather than in the interpreter's internal representation.

At any time during execution, it is possible to ask the simulator to compute and print the
tree of all possible "next actions” from the current point. We call this “symbolic execution tree”
because variable values are represented by expressions that may involve other variables., Of
course, the calculation ol conditions cannot always be completed when it involves variables
whose values depend on interactions with the environment. Such guards are assumed to be
“true”. Since such trees can have large depths and widths, at the time the user requests the cal-
culation of a tree he/she is prompted to provide upper bounds (Annex 1.).

As a practical help for the user, “checkpoints” can also be set, that is, the current behavior
expression and/or the sequence of actions exccuted so far can be saved in memory of on an
external file, thereby giving the user the possibitity of restarting the simulation some time later.

In order to allow the user to explore several alternative execution paths in the specifica-
tion, at any point it is possible to obtain a display of the "history” by which the current execu-
tion point was reached (possibly including the guards that were evaluated and the instantiations
encountered) and therefore to see where a certain variable acquired its value (Annex 2.A).
This history will include all the actions performed so far and, depending on the format chosen,
may include all the process instantiations and not only for the current path, but also for all
paths attempted so far. It is possible to request that the execution go back to some point,
where a different value can be chosen.

To help users in dealing with the complexity of LOTOS data representation, a command is
provided by which they can ask for the valid syntax of constants to be entered. Constants are
syntactically and semantically checked at the time they are entered, that is it is checked that
the value entered is appropriate at the time it is entered. Furthermore, shorthands for com-
monly used constants can be declared. This is necessary, because cxtremely long constants may
be required in specifications. When written in full, the definition of a TS primitive takes, in the
average, about 400 characters. lurthermore, the sheer compactness of the LOTOS constraint-
oriented specification style is by itself a source of problems. Most actions involve between six
and ten processes and guards which, when written in full, are over 2000 characters long. Obvi-
ously such displays are impossible to understand. OQur interpreter is able to look up the data
base of user-defined shorthands and reduce the displays to a form which will be much shorter
and much more understandable. Shorthands are distinguished by the fact that their name starts
with the character $ (Annex 0.A).

When complex guards are involved in an action, it might be difficult to find values that sat-
isty them. To help the user in this respect, our interpreter has a feature by which one can ask
that a set of guards be cvaluated for a set of user-defined values placed in a file, rather than on
only one value at the time. When an action requires a tuple of values, for any of these it is pos-
sible to provide sets of values instead. The guards are then evaluated on all possible combina-
tions of values taken from the sets. This can be done for one or several next actions. The
interpreter will then report for actions and for which tuples of value(s) the evaluation was suc-
cessful, and all the tuples tried are numbered. Subsequently, the user can ask that action N be
cxecuted with tuple Y, where Y will presumably be one of the tuples for which the evaluation
succeeded. It is also possible to obtain detailed step-by-step traces of the evaluation process to
see why a guard failed. Sets of values have names starting by # (Annex 0.B and 2.B).

Yet another difficulty is presented by the “choice” construct, which does not generate a
LOTOS action, however a choice is needed in order to determine the evolution of the simula-
tion. This case is solved by presenting the user with a "pseudo-action” (marked by an asterisk)
(Annex 2.C) which requires the input of a value just as regular actions do. The user must keep
in mind that in this case the specification allows a range of values for the variable, while the
interpretation process restricts this range to one choice only. A resulting deadlock, therefore,
does not necessarily imply a deadlock in the specification, because a different choice of values
may not lead to a deadlock. An example is provided by the following process, which is part of
the specification considered below:

bl

L

tc
F:
in
th

lit

ex
ot
in
in
T
tic
be
to

Executing Large LOTOS Specifications 401

. : process TCAcceptance{t]: noexit =

/ choice AcceptTC: Tids []

! : [AceeptTC ne {}] -> i;

3 t MaTAddress 2teei:TCEIL 2tsp:TSP

1 [ISTCONI1(tsp) implies (Tid(ta,1cei) Isin AcceptTC)]s
: - TCAcceptance|t]

! : endproc (* TCAcceptance *)

§ In the specification, this process must collaborate with other parallel processes by offering an
: 1 action on gate t. It is ready to accept a TSDU whose address part is contained in a nondeter-
- . ministically chosen nonempty set of addresses (ne stands for "not equal”). As it encounters this
i process, our interpreter will prompt the user to provide a choice for AcceptTC before reaching
the next behavior. If the user provides an empty set {}, the guard in the next behavior is evalu-

ated to “false” and deadlock follows because the process does not cooperate on t. This dead-
! 3 lock, however, is not specified according to proper LOTOS semantics because only nonemply

sets were acceptable choices for AcceptTC, thus the user erred in providing an empty set.
Therefore, the deadiock will simply have to be ignored and a correct choice will have to be pro-
vided instead. How to deal with this difficulty is an interesting problem in the design of
- : LOTOS interpreters [VE]. In our system, the user can ask that all guards evaluated after the
; i choice of a value be listed, together with the results of their evaluation. In this way, it is possi-
ble to see where the value failed, the interpretation can be backtracked to the choice point, and
another value can be selected (Annex 2.D).

3. THE LOTOS OSI TRANSPORT SERVICE SPECIFICATION.

i 3 The OSI Transport Service [ISO2| specification was chosen as the basis for this experiment
; because of several reasons, the most important of which being the fact that it is is possibly the
best developed LOTOS specification in existence today. It has a long history [BK][SPLB]. Its
. current version [ISO4] is based on a document produced by A. Tocher [ISO3] and recently
' modified and completed by G. Scollo, with the collaboration of an ad-hoc ISO committee.
Other specifications, such as the LOTOS Transport Protocol Specification [ISO5} and the
LOTOS Session Protocol and Scrvice specifications [SVS] have been based on idcas first devel-
oped there.

The TS specification is modularized according to the constraint-oriented specification style
[SVS][BB]. In this style, which has become the most currently used specification style in
LOTOS, the various requirements of the specification are partitioned in independent processes,
where cach process is established as the “enforcer” of a constraint. Constraints can relate both
to the order in which primitives can appear (this is expressed by the order of LOTOS behavior
expressions) and to the possible values of parameters (this is expressed by input predicates).
For example, the so-called "local” and "global” service constraints [LOG] are implemented by
independent modules, and then the parallel composition of the modules is specified, meaning
that the entity must satisfy both local and global constraints.

Unfortunately, because of the length of this specification (1074 lines of LOTOS, without the
library or comments), it is not possible to describe it here in any detail, and the reader is
assumed to have some previous knowledge of it.

Note that the full specification was used in our experiment, and not just parts of it. How-
ever, in order to better understand certain processes, it has often been found useful to disable
others. In addition, cases of unguarded recursion that raise the possibility of infinitely branch-
ing execution trees [LOBF] were detected by our static semantics analyzer and were guarded by
internal actions. Finally, sets of equations were found, that originate lengthy computations.
This occurs in relation to the definition of the "Quality of Service” parameters, where an equa-
tion expects that a variable be instantiated in a premiss. Extensive backtracking may occur,
because the evaluator may have to check a large number of possibilities. Happily, it is possible
to rewrite such equations in a more efficiently computable format.

402 . R. Guillemot et al.

4. TRACING METHODOLOGY

The compiler part of our system performed the syntax and static semantics checks, which
enabled us to correct several errors in the specification. For brevity we will not discuss this
part of the work.

[ISO2} defines the TS characteristics with the help of the English language and some fig-
ures, where {ISO4] defines them as the composition of constraints represented by processes.
We experimented in executing the [ISO4] specification with scenarios extracted from [ISO2}.
Real “testing” or even systematic checking were not our immediate aims, rather we wanted to
measure the usefulness of our tool with respect to these tasks, in order to find out how it could
be enhanced to deal with them.

Three methods have appeared appropriate towards this goal.

- The first method involves examination of the symbolic execution trees. Since large trees
are impractical to compute and'read, and since they contain many uninteresting paths,
we compute a tree up to a certain depth, then select a leaf node, compute a tree from
that node, etc. The main problem with this approach is that many of the branches are
unfeasible because they contain ‘contradictory conditions such as “IsTCONreq(x) and
ISTCONind(x)". These conditions cannot be evaluated because they contain variables,
thus by our method they are assumed to be true.

- In the second method, which corresponds to the basic way of operating of our inter-
preter, the user cxercises the specification by entering sequences of primitives by hand.
In this way it can be found out which primitives arc acceptable at a given point, etc.
This methodology is very flexible and very useful for a user who is becoming acquainted
with the specification but is obviously limited by the speed of the user in reacting to the
prompts of the system and entering the data. This method can be very considerably
speeded up by using shorthands and automatic evaluation of conditions on sets of values
as mentioned above. Furthermore, at any point it is possible to request that the sym-
bolic execution tree from that point be computed.

- Another methodology involves creating "testing processes” to be run in parallel with the
specification. A very simple type of test process that we have found to be useful in our
work is a process that exercises the specification on finite sequences of actions. Vari-
able parameters can be entered by the user by using a specially designated gate. One
can create a library of such processes according to several testing scenarios. Here we
anticipated on the development of LOTOS, because we assumed the presence of con-
structs allowing external refererices in a specification. It is useful to combine this
method with the symbolic execution tree method, in the sense of obtaining the execution
tree of a process and its tester. Since the tester provides the values of all the variables,
except those depending on choices, the tree is considerably reduced. By inspecting it
one can check whether the sequence of data submitted by the tester is accepted.

5. SOME EXAMPLES

Reasons of space make it impossible to show complete examples. We will show only simplified
or shortened examples, in edited form.

Example 1 shows a symbolic tree. Example 2 shows several of the major features of the
interpreter, as described above. Example 3 shows the steps needed to achieve a connection.
Fig. 1 shows a typical screen during a simulation session. Clockwise from top left we see: A
list of shorthands; a portion of the execution tree; a menu; and a portion of the specification
itself, containing (insert) a test process.

Executing Large LOTOS Specifications 403

6. IMPLEMENTATION ISSULS AND PERFORMANCE CHARACTERISTICS

ﬁ As mentioned above, LOTOS scmantics was implemented by translating LOTOS inference
rules into Prolog. Qur first experiences with this method led to disappointing results on specifi-
cations of realistic size. The reasons for this were found to reside in the fact that a straightfor-
i ward one-to-one translation of the inference rules of [ISO1] into Prolog statements causes
F repeated recursive calls of the inference rules in cases where more than one inference rule is
g used for the same LOTOS construct. This problem was solved by combining all such rules into
one. For example, in [ISO1] three inference rules are used to define the parallel composition
operator, and the recursive calls required by the first two are also required by the third. When
the three rules are combined in one, the number of recursive calls is reduced by one half.
When parallel composition is nested to n levels, this gain is raised to the power of n.

Currently, on the cxample discussed in this paper, calculation of the next menu takes an
average of 5 seconds (as mentioned above, there are exception in cases of equations that were
not defined in a computationally efficient way). The system used is a SUN 3/75 running under
UNIX and Suntools, while the Prolog system used is Quintus Prolog in compilation mode. This
performance appears to be quite adequate for use in the "one-stepper” mode. It is of course
inadequate if the simulator is to be used for reachability analysis or generation of large amounts
of data. For these purposes, we are envisaging more radical optimizations, namely in the value
expression evaluator and in certain frequently used inference rules.

Prolog appeared to be a very appropriate language for this project [LOBF][PA]. Apart
from the usefulness of the unification and backtracking mechanisms in this type of application,
the high-level style of programming afforded by Prolog allowed a lot of design experimentation
to take place, which otherwise would have been prohibitive in a small team such as ours.

Finally, the Suntools package contains several facilities that help in the use of these interac-
tive features.

7. CONCLUSIONS

Executing and debugging constraint-oriented LOTOS specifications of realistic size is a task
that involves considerable technical difficulties: after all, the most effective specification style
is not necessarily the best for execution. Several closely intertwined processes are being exe-
cuted at once, each process posing its own constraints on the next possible action. These con-
straints are expressed in terms of very complex value expressions, which need to be abbreviated
in order to be understood. Even after abbreviation, they often remain difficult to read. A
great number of them will turn out to be false, because of contradictory conditions. Frequent
Tehoice” constructs force the choice of values'that may later be discovered to be mutually
incompatible. This leads to situations that appear to the interpreter as deadlocks, although
they may simply be the consequence of inappropriate choices, hence the need for frequent
backtracking.

As it happens in debugging ordinary programs, a thorough understanding of the logic of the
specification is necessary in order to proceed productively, but exercising a specification is one
way of gaining insight in its mechanism.

The result of our experience is that the technique is feasible, and that the necessary skills
can be learned by good programmers. However much can be done in order to instrument exist-

ing interpreters with good interactive debugging aids, and the work reported here is only a first
effort in this direction.

As a result of the availability of such tools, it can be expected that it will become custom-
ary to execute specifications as they are being written, which may lead to changes in the gener-
ally practiced specification style.

404 R. Guillemot et al.

ACKNOWLEDGMENTS

Parts of the interpreter were written by J.P. Briand and M. Fehri. B. Stepien has also collabo-
rated in the programming. We especially wish to thank A. Obaid for his continuing collabora-
tion in this project, and for many useful ideas. The colleagues of the LOTOS group at Twente
University, who themselves have been involved in the production of a LOTOS interpreter, have
been generous in sharing their experiences with us. G. Scollo is to be credited for the time he
spent discussing the details of the TS specification. Funding sources include the Natural Sci-
ences and Engineering Research Council of Canada and Bell-Northern Research.

REFERENCES

[BB] Bolognesi, B., and Brinksma, E. Introduction to the ISO Specification Language
LOTOS. To appear in Computer Networks and ISDN Systems.

[BK] Brinksma, E., and Karjoth, G. A Specification of the OSI Transport Servicein LOTOS.
In: Yemini, Y., Strom, R., and Yemipi, S. (eds.) Protocol Specification, Testing, and Ver-
ification, IV. North-Holland, 1985 227-251.

[FEH] Fehri, M.C. A System for Validating and Executing LOTOS Data Abstractions
(SVELDA). MCS Thesis, University of Ottawa, 1987.

[ISO1] International Organisation for Sfandardization. Information Processing Systems. Open
Systems Interconnection. LOTOS - A Formal Description Technique Based on the Tempo-
ral Ordering of Observational Behavior (ISO DIS 8807), 1987.

[ISO2] International Organisation for Standardization. Open Systems Interconnection. Trans-
port Service Definition (ISO 8072), 1985.

[ISO3] International Organisation for Standardization. Formal Specification in LOTOS of ISO
8072 (ISO/TC 97/SC 6/N 4395), 1986. ’

[ISO4] International Organization for Standardization. Formal Description of ISO 8072 in
LOTOS. (ISO/TC 97/SC 6/WG 4/N 317), 1987.

[ISO5] International Organisation for Standardization. Formal Description of the OSI Connec-
tion-Oriented Transport Protocol in LOTOS. (ISO/TC 97/8C 6/WG 4/N 318), 1987.

[LOBF] Logrippo, L., Obaid, A., Briand, J.P., and Fehri, M.C. An Interpreter for LOTOS:
A Specification Language for Distributed Systems. To appear in Software - Practice &
Experience.

[LOG] Logrippo, L. “Constructive” and "Executable” Specifications of Protocol Services by
Using Abstract Data Types and Finite State Transducers. In: Rudin, H. and West, C.H.
Protocol Specification, Testing, and Verification, III. North-Holland, 1983, 111-124.

[LP] Logrippo, L. and Probert, R.L. Protocol Specification-Level Validation. In: Sunshine, C.
(ed.) Protocol Specification, Testing, and Verification North-Holland, 1982, 303-304.

[LSU] Logrippo, L., Simon, D., and Ural, H. Executable Description of the OSI Transport
Service in LOTOS. In: Yemini, Y., Strom, R., and Yemini, S. (eds.) Protocol Specifica-
tion, Testing, and Verification, IV. North-Holland, 1985, 279-293.

{PA] Pappalardo, G. Experiences with a Verification and Simulation Tool for Behavioral Lan-
guages. In: Rudin, H., and West, C. Protocol Specification, Testing, and Verification,
VII. North-Holland, 1987, 251-264.

[SPLB] Scollo, G, Pappalardo, G., Logrippo, L., and Brinksma, E. The OSI Transport Ser-
vice and its Formal Description in LOTOS. In: Csaba, L. Tarnay, K, and Szentivanyi, T.
Computer Network Usage: Recent Experiences North-Holland, 1986, 465-488.

[SVS] Scollo, G., and Van Sinderen, M. On the Architectural Design of the Formal Specifica-
tion of the Session Standards in LOTOS. In: Sarikaya, B., and Bochmann, G.v. (eds)
Protocol Specification, Testing, and Verification, VI. North-Holland, 1987, 3-14.

[VE] Van Eijk, P. Software Tools for the Specification Language LOTOS. Technische Hoges-
chool Twente, 1988.

Executing Large LOTOS Specifications

ANNEX
0. Common definitions
/* These are comments

/* A: Detined constant values for all examples

$1 = Succ(0) $2 = Suce(Succ{0)) $p - /($1,%2)
$adrhA - SomeTAddress $adrB = AnotherrAddress (SomePhddress) $tcei = SomeTCEI
$NODATA — <> $DATA) - Octet(Octet(0,0,0,0,0,0,0,1))
$TDIreq = PDTreq($DATAL) $THTind ~ TDTind{$DATAL)

$TEXreq -~ TEXreq{$DATAL) $TEXind = PTEXind ($DATAL)

$TDISreq = TDISTeq($DATAL) $TDISindU ~ TDISind(User, $DATAL)

$Delays = Delays(EstDelay($]),TransDelay($1,$1,$1,$1),RelDe]ay($1,$l))
$Failures railures{$p,$pP,$P,$P)

$Performance - Per(ormance($De]ays,$Failures,ThroughpuL($l,$1,$1,$]),RER($P,$P))
$TQOS - TQOS($Performance,Lowust,NoProtection)

S$TCONTeqAB = TCONreq(SadrB,Sadrn,NoTEX,$TQOS,$NODATA)

$TCONindAB = TCONind($adrB, $adra, NoTEX, $TQOS, $NODATA)

STCONrespAB = TCONresp($adrB,NoTEX,$TQ0S, §NODATA)

$TCONconfAB = TCONconf ($adrB, NOTEX, $TQOS, $NODATA)

$pviderGenind = PDISind(Provider, $NODATA)

/* remark: in the cxamples, identical conslant names with suffixes

/* - x : define the same primilive with the option UseTEX instead of NOTEX
/% - BA : define the same primitive with $adrA instead of $adrB

/* B: befined Sets. U - set union

Set name =>
Set. name =>

= ($adrA , $adrB)

{ $TCONTeqAB, $TCONIndAB, $TCONresphB, $TCONconfAB }

Sel. name <> | $TCONregABx, $TCONindABx , $TCONrespABx, $TCONconfABx)

Set name => A | S‘I‘D’I‘rcq,$'l'l)'l‘ind,$‘1‘l-:Xreq,$'l‘EXind,$'1‘DISreq,$'l'DlSindlI, $PviderGenind)
Set name => KtspAB = HKtspABe u R tspABex u ftspdxi

¥ tspABex

1. A SIMPLE EXAMPLE OF SYMBOLIC EXECUTION

Enter a command ‘h° for help - > tree TCEPOrdering
Maximum excculion deplh (default - 5) <> 4

1 [role-CallingRole] t ?ta:TAddress ?te i:TCH1 ?ter: TSP
[and (1sTCONreq(ter), 1scallingof (ta,ter))] 1823)

t 2ta:TAddress ?tcei:TCEl 2£e2: TSP [1sVal idTCON2For(ta2, tel)] [825)
t ?ta:TAddress ?lcei:TCELl ?Lsp PSP IsTDY(Lsp)] [836]
1t :TAddress ?teei:TCEI ? P IsTDT(Lsp) | [849]
2 { eTEX] t ?ta:TAddress ?tcei:TCEL 2E5p: TSP [1STRX (Lsp)) [855]
3 t ?ta:TAddress ?tcei 2 PSP [ISTDIS(tsp)] (863]

) [x=UseTEX] t ?ta:TAddress ?tce ?tsp PlIsTEX(tsp)] [836]

2 t ?ta:TAddress ?tcei:TCET ?Lsp:TSPll.‘EX(Lsp)] [85%]
3 t 2ta:TAddress ?tcei:TCEI ?tﬁp:TSP[ISTDIS(tSp)] (863]
{ ?ta:TAddress ?tcei:TCEL ?Lsp:TSP[lsTDIS(Lsp)] [8631]

1 exit(864)

?ta:TAddress ?tcei:TCE1 ?ts
exit[864]

STSPLISTDIS(tsp)] 1B25]

1

|

|

|

2

| 1 t ?ta:TAddress ?tcei:TCEI ?Lsp: DT (Lsp)] (849]
|

|

3

|

t

1

1
!
|
|
|
|
|
|
|
|
|
2
1

405

406 R. Guillemot et al

2. A SIMPLE EXAMPLE OF STEP BY STEP EXECUTION

Enter a process to be executed ==> TCEP(CallingRole)

Check Points/MANUAL Execution Level/0 Execution Path/[]

<1 >- t? [ta,ta,ta]:TAddress ? [tcei,tcei,tcei]:TCEI ? [tsp,tsp,ter) - TSP
[and(IslcONreq(tcr),IsCallingof(ta,tcr))] ~--> bhl [786,797,823]

Enter a command or 'h’ for help ==> 1

/* A: The user has selected action 1, the only possible one.
/* lle is then prompted for the nccessary tuple of values

Value for the Synchronization variables: [ta,ta,ta] : TAddress ==} $adrA
Value for the Synchronization variables: [teei,tcei,tcel} : TCEI ==) $tcei

Value for the Synchronization variables: {tsp,tsp,ter]: TSP ==> $TCONreqBA

Predicate(s) of action 1 evaluated to false !!
Would you like to see the trace of the evaluation ? (y/n) ==> y
1: ISTCONreq(S$TCONreqBA) -> true
2: IsCallingOf($adrA,$TCONreqBA) -> false
which expression do you want to trace { <N> or <RTN>) 2 2 “
EVAL: [sCallingOf({$adrA,$TCONreqBA) . .
| EvaL: $TCONregBa = ‘ICONreq($adrh, $adrB, NOTEX , $TQOS, §DATA)
FOUND: [] ==)> IsCallingOf($adrh, $TCONregBA) = eq($adrp, $adrB)
| EVAL: ecq($adra,$adrB)
| FouND: {) ==> eq($adra,$adrB) - false
| <~ eq($adra,$adrB) = false ,
< lsCallingOf($adrA,$TCONreqBA) = false

Enter command or 'h’ for help ==> 1

Value for the Synchronization variables: (ta,ta,ta):TAddress ==) $adra
Value for the Synchronization variable: [tcei, tcei,teei :TCEY ==) Stcei
Value for the Synchronization variables: [tsp,tsp,tar] : TSP == $TCONregAB

Predicate(s) of action 1 evaluated to true 1!

/* B: After an intermediate action due to an enable we get:

Check Points/MANUAIL xecut.ion Level/2 Execution Path/[1,1
Events sequence [1] t !$adrA !$tcei !$TCONreqAB

<1 >- t! $adrA:TAddress ! $tcei:TCEI ? {tsp,tsp,tc2]: TSP

[1sValidTCON2For(te2, $TCONTeqAB) | ~==> bhl [792,803,833)
<2 >- t! $adrA:PAddress ! $tcei:TCREI ? [tsp,tsp,tsp] : TSP
[IsTDIS(tsp)] -==> bh2 [792,803,863]

Enter command or ‘h’ for help ==) 1,2 \

Value for the Synchronization variables: {tsp,tsp,ter] : TSP ==> K¥tspAB
The existing predicate(s) for action 1: [IsvalidTCON2For(tc2, $TCONreqAB) }
1.1> $adra, $tcei, $TCONcOnfAB ==> true

1.2> $adra, $tcei, $TCONconfABx ==> true

The existing predicate(s) for action 2: [IsTDIS{tsp)]

2.1> $adra, $tceil, $PviderGenInd ==) true

2.2> $adra, $teeil, $TDISindU ==> true

Enter Action number to execute or ‘h‘ for help ==> 1.2

Executing Large LOTOS Specifications 407
/% C:
Cheeck Points/MANUAL on Level/3 Execution Path/{l,1,1}
Iivents sequence [11] 1$teei 1$TCONreghB
(111} t$leei

value for x:TEXOption is needed for ‘choice’ {836])
t! $adra:TAddress ! $tceil:TCEI ? |tsp,tsp,tsp):TSP

[IsTDIS(Lsp)] -~=~3 bh2 [792,803,863)

Enter command or 'h’ for help ==> 1
For "choice”, valuc for variable x:TEXOption must be entered ==>

/= D: 1f we try NoTEX the system will offer only a disconnection on the endpoint
/* (SadrA,$tcei)
/* The command le (Listkval) helps the user to find why

Evaluated guards & expressions:
1: IsTEXOptionOf (NOTEX,$TCONconfABx) =) false
2: CalledRole=CallingRole ~> false
f 3: calledRole=CalledRole -> true

/* So, it’'s better to go back (command back) and retry with UseTEX
/* After a step due to an enable we get

Check Points/MANUAL Execution Level/S Execution Path/[1,1,1,1,1)
Hvent sequence [1} t !$adrAa !$tcei t$PCONraqhAB
[111] t !$adra ! $TCONcon f ABX

<1 >- tt! SadrA:TAddress $teei:TCEI ? [tsp,tsp,tspl:TSP

[IsTD¥(tsp)] ~==> bhl {792,803,849]
<2 >- t1 $adrA:TAddress ! $tcei:TCEl ? [tsp,tsp,tspl:TSP

{IsTEX{tsp)] -~-» bh2 [792,803,855]
<3 >- t! $adrA:PAddress ! $tcei:TCEI ? [tsp,tsp,tsp):TSP

[1sTPIS(tsp)] ---» bh3 [792,803,863]

/* We are now able to transmit normal or expedited data or to generate a
/* disconnection on the endpoint ($adrA,$teeci)

408 R. Guillemot et al.

3. ESTABLISHMENT OF ONE CONNECTION

cer a process to be executed ==> TConnection

/* gencration of a TCONreq on endpoint ($adrA,$tc

Check Points/MANUAL xecution Level/0 xecution Pa

<1>- t?|ta,ta,ta,ta]l :TAddress ?{tcei,tcei,tcei,tecei] :TCRI ?([Lsp,isp,Lsp,ter| TSP
[and{ IsTCONreq(ter),IsCallingOt(ta,ter))]
[IsTReq(tsp)] --> bhl |786,797,823,870]

<2>~- t?[ta,ta,ta,ta] :TAddress ?[tcei,tcei,tcei,tcei] : TCKI ?[Lsp,tsp,tsp,teci] 'SP
[and(IsTCONind(tei), IsCalledot(ta, tci))]

[1sTReq(tsp)] --> bh2 [786,797,827,870]

Eknter Action number to exccute or “h’ for help ==> 1
value for the Synchronization variables: [ta,ta,ta,ta):TAddr
value for the Synchronization variables: [tcei,tcei,tecei,tcei]:TCRI ~=> $tecei

value for the Synchronization variables: (tsp,tsp,tsp,ter]:TSp ==> $TCONreqAB

Predicate evaluated to true !

“ :
/* then, after a few steps due to choice and enable constructs,
/* during which a 'PCONindication is generated, .
/* we are able to generate the TCONresponse-at the other end of the connection

Check Points/MANUAL Bxecution Level/7 path/(1%3,3,3,6,1,1
Events sequence [l] t ?$adrA:ThAddress ?$tceil:TCEI ?$TCONreqAB:TSP
[1,3,3,3,6] t ?$adrl Address $1'CONindA

TSP

<1>- i {enable: exit !$adrA:TAddress !$tcei:TCEI) > bhl [912]

<2>- i (cnable: exit !$adrB:TAddress !$tecei:TCEI) > bh2 [916]

<3>- 1 (enable: exit !NoTReqs:TRegHistory) meeen {1019]

<4>- i (cnable: exit t$adrA:TAddress !$tcei:TCEIL) ----=> bh4 [912]
* ¢5>- value for tdi:TSP is nceded for ’‘choice’ --==> bh% {1025

<6>- t !'$adrA:TAddress !$tcei:TCKI ?(tsp,tsp,tc?,tsp,tsp, tsp) TSP
{IsValidPCON2For(tec?, $TCONreqAB)]
[IsTReq{tsp)]
[ne($TidAl,$TidAl)}
[IsTReq(tsp)l -~—-- > bh6 **falsex* [792,803,833,894,914,1034]
<7>- t '$adrA:TAddress !$tcei:ICRI ?[tsp,tsp,tsp,tsp,tsp,tsp]:TSP
[IsTDIS(tsp)]
| IsTReq(tsp)]
[ne($TidAl, $TidAl)]
[IsTReq(tsp)] ~===> bh7 #**false** [792,803,863,894,914,1034}
<8>- t !$adrB:TAddress !$tcei:TCEI ?[tsp,tsp,tc2,tsp,tsp,tsp): TSP
[1sValidTCON2For{tc2, $TCONindAB)]
[IsTReq{tsp)] :
[ne($TidBl,$TidAL)]
[IsTReq(tsp)] ~=--> bh8 [792,803,833,894,914,1034}
<9>~ t !$adrB:PAddress !$tcei:TCREI ?([tsp,tsp,tsp,tsp,tsp,tsp] TSP
(ISTDIS(tsp)]
[Is'TReq(tsp)]
(ne($TidBL, $TidAl))
[1sTReq(tsp)] ~-==> bh9 [792,803,863,894,914,1034]

/* Actions 8 and 9 can succeed and lead to the generation of a TCONresp or a TDISreq
/* on endpoint ($adrB,$tcei)
/* Actions 6 and 5 are false (an instantiated predicate was evaluated to false)

Enter Action number to execute or 'h’ for help ==> 8

value for the Synchronization variables: [ta,ta,ta,ta):PAddress ==) $adrB
Value for the Synchronization variables: {tcei,tcei,tcei,tcei]l :TCEI ==> $tcei
Value for the Synchronization variables: [tsp,tsp,tsp,tcr]:TSP ==) $TCONrespAB

Predicate evaluated to true !

Executing Large LOTOS Specifications _ 409

/* A: The history given below shows the steps done in order to obtain
/* a transfer of data between the two peer entities

epl TConnection{t] =

|1 t ?$adrA:TAddress ?$tceil:TCEI 2?$TCONreqgAB:TSP
[and{ISTCONreq($TCONreqAB),IsCallingOf ($adrA, $TCONreqnB))]
[IsTReqg{$TCONreqAB)} [786,797,823,870}

|..3 choice{tspr:Tsp = $TCONreqAB) ({1017}

.3 choice{tspi:TSP = $TCONindAB) {1017}

...... 3 i (specified explicitly) [1018)

........ 6 t ?$adrB:TAddress ?$tceil:TCE1 !$TCONindAB:TSP ;
[and(IsTCONind($TCONindAB),IsCalledof ($adrB, $TCON1ndAB))] s
[ISTInd($TCONindAB)]

{ne($TidBl, $TidAl)] {786,797,827,905,914,1019]

1 i (enable: exit !$TCONreqAB:TSP) [825)

.1 i (enable: exit !$TCONindAB:TSP) [B29]

.............. 8 t !$adrB:TAddress !$tceil:TCEI ?$TCONrespAB:TSP
{IsValidTCON2For($TCONrespAB, $TCONindAB)]
[IsTReq($TCONrespAB)}

[ne($TidBl, $TidAl)]
[IsTReqg($TCONrespAB)] {792,803,833,894,914,1034}]

1 choice(x:TEXOption = NoTEX) [836)

-.1 i (enable: exit INOTEX:TEXOption) [836]

....1 i (enable: exit !$adrA:TAddress ($tceil:TCEI) {912]

1 i (enable: exit !$adrB:TAddress !$tceil:TCEXI) [916}

-1 i (enable: exit !NoTReqs:TRegHistory) [1019]

.2 i (enable: exit !$adrB:TAddress !1$tceil:TCEI) [916] i

-2 i (enable: exit !§adrA:TAddress !$tceil:TCEI) [912] H

-2 1 (enable: exit !Append($TCONrespAB,NoTReqs):TRegHistory) {1036)

.2 choice(tspr:TSP = $TCONrespAB). [1017] ki

2 choice(tspi:TSP = $TCONconfAB) [1017)

....... 2 i (specified explicitly) [1018)

....................... seerenanesssss.d t 1$adrA:TAddress !$tceil:TCEI ! $TCONconfAB: TSP

[ISValidTCONZFOr(STCONcoanB,STCONtquB)]
[IsTInd($TCONconfAB)] [792,803,833,905,792,803,1019)

3 i (enable: exit !NoTRegs:TRegHistory) [1019]

1 choice(x:TEXOption = NoTEX) {836}

..1 i (enable: exit !NOTEX:TEXOption) [836]

3 t 1$adrA:TAddress !$tceil:TCEI ?$TDTreq:TSP
[IsTDT($TDTreq)]

[IsTReq($TDTreq)]
{IsTReq($TDTreq)] [792,803,849,894,792,803,1034]

..1 1 (enable:exit!Append($TDTreq,NoTRegs):TRegHistory)

....1 choice(tspr:TsP ~ $TDTreq) [1017)

.1 cholce(tspl TSP = $TDTind) [1017]

. . 1 i (specified explicitly) [1018] ;

5l'tttattttktt*tﬁtti'tt'lttttfi*ittﬁiﬂ*ittfi***!i!lﬂ*t!ttt7 ti$adrB:TAddress!$tceil: TCEI t $TDTind : TSP .7

{ISTDT($TDTind)] [ISTInd({$TDTind)]
B (792,803,849,905,792,803,1019}

R. Guillemot et al

410

1 23y

[3] uop3deuuoyy {[1]]
(dois ! puysipy} 1803| gupeil geTy

_ beusipy(|eal} vupely ZETE

! (@p‘sob'q uoi3doxel*gIp) UCOND))L | 1e93| wipeR TETT
* (gp‘sob‘g uojidoxal ‘gupe)dseUNOdLi 183§ gJPR|IT BEfl
f(8p‘sob‘yuo|doxey ‘yape‘gupe)pulNadLl 16311 gipeis B2l}
f(@p*eob 'y uojadoxey ‘vape‘gapr)beaNgdL) $€91] Wipe|3 gZIy
‘uop3dgx31:g uoyidoxey ‘y uspadoxeyyn) g2T1

= 3pX80U @ Ha.du .—DWNUI»wE_. 338204d 9211

{*Sesed 1883

N 11 ensy 01 pesenpene e3vopeag
€ <== d{8Y 4O, ,y, JO pueuOd JBju

L (CNLYD> 40 ¢ND>) #2wa3 01 jusm nok op uo)ssesdxe Yoy

esie) ¢~ (QuruiNgdLS)bay)sT

ana3 ¢~ (TYPELS'TEPILS)eU

8518} (- (QYPUINDDLS)bAN] ST

8n43 (- ((QVRUINDOLS'G4PRS) S0PE | 18D8] * (QVPUINGDLS)PUINGDL ST Jpue
A Ce= (U7A) & UOLIBIN{EAD B2 40 82813 WYl 998 03 8y} NOA

3/ eao pneus dap p ase

¥ == di8y Jo; ,y, 4O puermd Jeju:

(o 3ueagbeydsy ,) doudpue

((ys“dsy)puaddy) 1}xa
¢ [(ds3)bsyis1] ds1:ds3y I3DL:)e03y sseJppyLieyy 3

[SEBT ¥I6'vB°228'L6L '08L ‘62TT] #Yq (~-m-

[(QwrOINDILS YbaY 8T] :
[(ivpLLs TP LS)0U] (Aio3stHboyl) 14xe
[(awpuiNDoL$)boy) S]] + (Auoysiybeyiiys) [3] 3usAgbeyds) sssooud

[((avPuINDDL Q4P®S)J0POLLEDST “ (GYPULNGILE)PUSNOILST YPur] b
dSLTQYPUINOILS | I3DL:TI818 | SS8UPPYLIGIPES 13 ~< 9>

(o 3UBA3gSL o) d0udpua

6187°Y16°586°£28° 6L 98L 6211 —— (
‘ ¢ et Hruw“hm;m“qhmzs (ys) [3] aueazbeyggy
[(awpuiNgL8)purLsT] 0

(uJ) 34%8 ! 1py| 130111803 sseuppylieiy 3)
£ 1 <~ [(1P3)puIpeIeIeuUBDIep|A0Id] [] dSL:HPY 8340YD)

[¢(evPusnDIL mguunv.—nuo:muwu.amqv:—zmu_.»wn:vgu_.w:u:nu
dS1:GVPUINGOLS | I30LiT1033¢ | SEeIPpYLigIpes {1 -¢ £)

[T 312 T'T°3°T)/u3vd UojaInoexy g/1eAeY UojINJex3 TN/ 23Uj0g yo8y;

[520T] 24Q ¢<---- ,83)0yd, JoJ papssu B} gSI:iP3 4O BAITA —¢ 25 <= [(uae)haduz]
[1zer] 1uq ¢o- (At31941dxe pajioeds) | ¢ 1> ¢ Hm
il mmpm e (s “(yse)earmay) [3] usazdsy ! ¢

QubeINGOLSI 18038 vJpesi3 : @duenbes jusa (1

((ys*sdsa)enoumy) 3jxe ¢ (ds3) 130151893, see.ppylingy 1)
¥ ¢- [(4ds1 yguoyieojpurs] fds3) pue (ysa ggdoysy Jdsa)]

[] dsLitds3‘adsy asjoyn)
<= :E&»Kﬁ%ﬁ
(42) [1] 3ueagbeygs)

suciieajddy 80307 J0; weisAg GA132%JBIUT
YIsT

Ys$3,u1q/ - (001]{3ays

L

dSLIGVPUINGOLS| I3DL: T4803828804ppYL 1gJpesy, 3 £

[ste1]) (AL3}0}1dxe poyoeds) | pr ot

(2187] (BYPUINDOLS = dSL:tdsi)eojoya T++

[218T] {BvbeuNODLS = dSL:Jdsy)esjoys poecv-eee

[S28T] (A1349(1dxe pajsyoeds) | 2+

(92811 (PUIPAIBIBUBDIBPLAGIGS = dSL: 1P3)BIJOYD g "'+ <"+

[216] (I3DL'T1893 | 830.ppYL:vIpeg |3|x0 :@{qeus) | 2= -+
(2161 (I301:748938 | sseuppyL:vipeg [3ixe terquue) } §**

8 ; gyhiaunn H

(Asorsipbant) 1xe
¢ (Ruoyspybey) tyatyae) [3] 3ueAa3qs| ssesoud

Usoulg) - [00341ays

7
(vLv0$‘SODL$* X3LON* @ypedas §)dsangdy - gvdsainooLs |k
(vLva$‘SODLS ' XILON* vIPes ‘GIPes)PUINDDL = avPurNODLS . Es
(VLY0S‘SODLS*X3LON‘ VIPes ‘gupeg)beaNgdL = qybeuNg)is
@Jpeg = guupedaug i
(TVLYAS* guoSeRISIQLE)PUISIAL = dPULSIALS
(TVLY0S‘NUosSEaISIALS)PUISIAL = PULSIALS
(TyLv0$)bassIgL = baisrars
(TVLVOS)PUIXIL = puiX3Ls

{191yq$)besy3l = bad

