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Abstract
The dynamic semantics of LOTOS are defined in terms of axioms and inference

rules which generate, from a given behaviour expression, the next possible actions and
their resulting behaviour expressions. In this paper, we present a new type of inference
rules, which are capable of generating traces of actions leading to a pre-selected action
in the specification. These inference rules are guided by the static derivation path
of the pre-selected action, which locates the action in the abstract syntactic tree of
the current behaviour statically. This allows a considerable reduction of the search
space. Such a technique often permits the analysis of divergent specifications that
are generally beyond the capabilities of verification tools based on traces.

Introduction
LOTOS interpreters in existence today can function usually according to two main

execution modes:
Step-by-step execution [LOBF88, vE88, vE89, Tre89, GHHL88, HH89]: the specification
is executed action by action where the set of possible next actions is determined after
the execution of an action. The user plays the role of the environment and resolves
non-determinism, by deciding what next action should be selected, and by providing the
required value expressions. Obviously, this execution mode is tedious if one wishes to
execute the specification for more than a few dozen steps.

Eager execution: in this execution mode, the system attempts to go as far as possible, without
user intervention, in the calculation of the behaviour tree of the specification. Values to
be provided by the environment are replaced by symbolic values, or are provided by a
"narrowing" algorithm [RKKL85]. An option in this execution mode is recognizing the
fact that a previously encountered behaviour expression is encountered again, which means
that a loop has been found [GL89, QFP88]. The output of eager evaluation can be either a
symbolic behaviour tree [GL89, HH89, Ash92], or an expanded version of the specification
[QFP88, Ash92]. The main problem with this execution mode is that symbolic behaviour
trees grow often too quickly, although remedies have been considered, such as cutting off
infeasible paths by narrowing, or reducing the size of the tree by compacting it [QFP88].
There are, of course, intermediate solutions. Smile [vEE91] enables the user to explore

interactively symbolic behaviour trees. In any system, it is possible to restrict exploration to
certain sub-trees by adding constraints, such as testing processes [GHHL88].
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In this paper, we consider another type of execution mode, the goal-oriented execution.
In this type of execution, the user specifies an action to be reached, usually an action that is
not immediately derivable. The system then proceeds in a sort of selective eager execution,
being able to select traces likely to reach the action. These traces can be found with the help
of a static analysis of the behaviour expression. For example, if the behaviour expression is���������	��

���������
�������������

����	��� ������������� ��

��� and the user wants to be given an (or all) execution trace(s)
reaching f , then the left-hand side of the behaviour expression does not need to be expanded
at all. The considerable savings in computing time and space are obvious from the example.
When process instantiation is present, the problem of finding statically the sub-expressions
that contain the desired action is slightly more complicated, but still quite manageable as we
shall see. The technique described here is more powerful than the “constraint” technique
described above, because the latter cannot be guided statically.
Our method allows one to look for execution traces according to several properties.

Among others, two basic trace characteristics can be expressed:
! "#%$'&�(%)+*-,�.�/ describes an execution trace leading from behaviour B to action a without
passing through actions in /10324(%5

6 78%9'&�:�(;)�<=)�>@?�)�*A,+.B/ describes an execution trace including actions a and b in that order, and
terminating with c without passing by any action in A, or other occurrences of actions
a,b, or c

In the first case, it can be specified that the targeted action can be any action. This is
expressed by a C�DEC in lieu of an action name.
We start by formalizing the process of statically finding a path leading to the targeted

action. Viewed as a tree composed of LOTOS operators as nodes and gates as edges, the
behaviour expression is traversed in order to detect the paths leading to the targeted action.
These are the static derivation paths (SDPs). Further, traces leading to the targeted action
are found by using goal oriented inference rules, defined on traces and guided by SDPs.
A different technique to achieve a similar goal, based on Petri Nets, is discussed in

[CS92].
For the sake of simplicity, only Basic LOTOS is considered

Definitions

Conventions

The following conventions are used in this paper:

• B, B’,Bi (i≥1) stand for LOTOS behaviour expressions
• Lower case letters, except i, stand for observable or unobservable actions, unless
otherwise specified

• i stands for the internal action
• F stands for the action performed by an exit construct
• G (B) is the set of all observable actions that appear in behaviour B
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• (B)[g1/h1, ..., gn/hn] stands for a relabeled behaviour expression where each action hi

that B can perform is relabeled as gi

Traces and Operations on Traces

Following are some definitions, mostly taken from [GLO91, Gal89].
A trace is a finite-length sequence of symbols. A symbol is an identifier that represents,

in our case, an observable action. Each trace can then be interpreted as a sequence of actions
that may take place between a process and its environment. A trace is denoted as follows:���

An empty trace.�����
A trace containing only one action a.�������	��
��
A trace containing two actions, a1 followed by a2.��
��
A trace containing the action a followed by the trace t.

Here are some trace operators:� ����
Projection: The projection of a trace t on an alphabet A, denoted by

�����
, is the trace

t excluding all actions not included in A.� ����
Inverse Projection: The inverse projection of a trace t on an alphabet A, denoted by�����
, is the trace t excluding all actions included in A.�  !�"

Concatenation: The concatenation of two traces t1 and t2, denoted by
�#�%$ �&


, is the
trace containing the action sequence of t1 followed by the action sequence of t2.' ()�*
Containment: Denoted by

�%+-,.�
, is used to express the fact that the trace t contains

the action a./ 01�2
Alphabet: Denoted by G43 �#5 , is the set of all actions in t.6 78�9
Relabeling: Denoted by

��:;� �=<?>=� �@
A
A
B�#�?C <D> C�E
, where each

>#F
with

>#F +-,G�
, for (1≤i≤n), is

replaced by ai .H IJ�K
Last: denoted by

��L
, is the last action in a nonempty trace t.M NO�P

Merging: Denoted by
� �?QSR �UT Q � 


. This describes the set of traces resulting from
composing two LOTOS processes, say P and Q, by means of the parallel composition
operator

Q :V�WE Q
, where t1 and t2 are traces generated by processes P and Q respectively.

Transition Derivation System

The operational semantics of LOTOS behaviour expressions are defined by means of
axioms and inference rules [ISO89], which permit the derivation of the observable and
unobservable actions that a behaviour expression can perform. This defines the labelled
transition relation B —aX B’, which means that the behaviour expression B can perform the
action a then behaves as B’.
The relation B-a1,...,an X B’ holds iff there exists B1,...,Bn+1 such that B1–a1 X B2,...,

Bn-an X Bn+1, with B=B1 and B’=Bn+1.
Let t be a trace. The relation B=t=>B’ is defined as:

1. Y[Z �\�^] Y`_ iff either B = B’ or there exists a natural number n with B—in X B’

3



2. Y Z � � �@��
B
A
A�	� C �U] Y`_ iff there exist B1, B2 such that Y Z �\�U] Y �
, Y � � ��� X Y 


and Y 
 Z �-� 
 ��
B
A
B�#� C?� ] Y`_

Static Derivation Paths

A static derivation path (SDP) of an action a in a given behaviour B is a sequence
identifying a path in the abstract syntactic tree of B in which a occurs. This path reflects
the directedtraversal of the operators composing the behaviour (e.g. ..., right part of enable
then nestedthen left part of choicethen ...). Process instantiations are done by using static
relabeling. Although relabeling must be done dynamically from the operational semantics
point of view, at this point, the only concern is where in a behaviour expression a given
action may be found, and not how it is derived.
An SDP has the following form:

[] An empty path.
[e] A path containing only one element e.

[e1,e2] A path containing two elements, e1 followed by e2.
e.s A path containing the element e followed by the path s.

An element of an SDP is a symbol identifying the type of the current behaviour construct
in the abstract syntactic tree. The symbols are names chosen after the LOTOS operators
they represent (e.g. choice, nested). If the behaviour is involved in a binary operator, i.e.QAQBQ � Q :�� E Q � QAQ � :�E � :��

or
���
, then branches for the left and right behaviour of the operator are

identified by the symbol left and right respectively, preceded by the symbol � .
�

specification producer_consumer[g1,g2]: noexit:=
behaviour

hide g11,g22 in
(producer[g1,g11] ||| consumer[g22,g2])
|[g11,g22]|
channel[g11,g22]

where
process producer[g,p] : noexit

g;p;producer[g,p]
endproc
process consumer[c,a] : noexit

c;a;consumer[c,a]
endproc
process channel[r,s] : noexit

r;s;channel[r,s]
endproc
endspec

Figure 1 A LOTOS Specification

	

4



�

producer_consumer[g1,g2]

hide

|[g11,g22]|

channel[g11,g22]nested

producer[g1,g11] consumer[g22,g2]

B4 B5

B0

B1

B2
B6

B3

|||

producer[g,p]

g

producer[g,p]

B8

B7

B9

p

channel[r,s]

r

s

channel[r,s]

B14

B13

B15

consumer[c,a]

c

a

consumer[c,a]

B11

B12

B10

Figure 2 Abstract Syntactic Tree of Figure 1

�

Consider the LOTOS specification and its abstract syntactic tree given in figure 1 and
figure 2 respectively. A static derivation path for the action output in the behaviour pro-
ducer_consumer[input, output] would be [instance,hide,parallelˆleft, nested,parallelˆright,
instance,prefix, prefix]. It identifies the action output to be the action a in the process
consumer[c,a] following the above path.

The set of all possible static derivation paths of an action a in a given behaviour B is
denoted by sdpset(a,B).

A restricted static derivation path of an action a in a given behaviour B with respect to a
set of excluded actions A, is a static derivation path not having any prefixed actions in A. We
also offer the possibility of looking for static derivation paths reaching anyaction not in A.

The restricted set of all static derivation paths of an action a in a given behaviour B is
denoted by sdpset(a,B)/A. For example, considering the example given in figure 3:

�������	��

��������
�����
�������� �������� ����������	!"����#%$'&�(�)*�	 "+-,
)��.���/��
10��/2��"����0	3�0�454'��47684'�
9:

���;���<
��������	����0	=*4'��6>3?�8�/@�

��2�@�A���2<�B6C3����D@�
*����3���9/��E;���F3���9G��E�$��
�.���/��
B0H�G2<�"���F0H3�0�454'��4I6.3����D@�

��2�@�A���2��B6J3����D@�
*����3���9/��E;���F3���9G��E;����3���9/��E�$�+
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specification testing[a,b,c,d,e]: noexit:=
behaviour

( a;b; stop
[]
b;c; stop

[>
a;b; stop
[]
d;c; stop )

|[a,c] |
b;c; stop
[]
a;e;c; stop

endspec

Figure 3 A LOTOS Specification

�
�
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Figure 4 Abstract Syntactic Tree of figure 3

�

The restrictions on the use of the function sdpset(a,B)/Aare:

1.
� ��� �	� &�
 )
��+

2. 0�� � � �	� &�
 )��?�������8+�� � &��������
��� 0 , ��� � stands for any action. For example,���������

*��� �!� &�( � , is the set of all static derivation paths of every action 0#"� � not
containing actions in A

The complete definition of restricted sdpset(a,B)/Ais given below.
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Successful Termination of sdpset()

The following describes the successful ending of the traversal of the static behaviour,
namely when the targeted action is found:

���������	�	
���
���������������� ����� �����! #"�$�%'&(�)"' *
���
+�,���-�/.��0
'�1
+� 2(3425��6#�7���98: �;�
���������	�	
��<�>=@?�ACB	�����D�E���F�!$<"G�H%�&(��"� *
��9�JIK�/.��7
��L� 2(3425��6#�7I*8: �M�

Unsuccessful Termination of sdpset()

Unsuccessful termination may result from:

1. reaching a stop
2. reaching an exit
3. the action encountered is one to avoid (i.e. belongs to A)
4. the instantiation of a process whose gate list does not contain the targeted action
5. the targeted action is contained in the list of hidden gates

More formally:

���������	�@
'�N���-�O.P�N�O�P�Q�QR
�����S���@�	
'�1
!���T���P���O�P� �UR��V"� J�T� : �

���������	�	
��<�>=�?TAWBP�����D�QR���"� 9I : �X.��9Y��Z8�\[�3][7��6#�7�^8�_I�`
�����S���@�	
'�N���a� b 
 ��cCcWcC�db5e�%f�O�P�g�JR���"� 9�Z8: �@b 
 ��cCcWcC�dbheT&
�����S���@�	
'�N�@iS"��T�kjmlZ"�69�9����� � R��)"' 9� : jml

Recursion

In all other situations, the behaviour has to be analyzed further. This is done by carrying
the evaluation of sdpset() to the sub-behaviour(s), according to the specific rules for each
type of construct, as described below. Informally, the recursive generation of the set of SDP
of the current behaviour has one of the 2 forms:

1. unaryoperators: sdpset(a,opB) is a composition of the elements of sdpset(a,B), prefixing
each element with the symbol representing op

2. binary operators: sdpset(a,B1 op B2) is a composition of the elements of sdpset(a,B1)
and sdpset(a,B2), prefixing each element with the symbol representing op followed by
ˆdirection, with directionbeing left for elements from sdpset(a,B1) and right for elements
from sdpset(a,B2)

• Prefix

n�o�pSn�q@r�s�t�u�v�t�w�xPyLz|{	} ~E��� pS�hq!�>�H�>��n����+n��Zn�o�p�n�q	r@s't1u	v�yLzO{P}��(v
�'�9t u��~�t w tT�/o0t w����}
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• Choice n�o�pSn�q@r	s'tNv>y u � �fy w z�{�}D~���������������q��
	Hq!�Nr	��n	���5n��Zn�o�p�n�q	r	s�t<v>y u zO{P}����
��������������q�� ����
���r	��n����5n�� n�o�pSn�q@r	s'tNv>ymw-zO{P}9�

• Nested n�o�pSn�q@r	s'tNvks�yLz|zO{P} ~ ��� � q!n�r q!o�� n@���5nM� n�o�pSn�q@r	s'tNv�yLz|{P}9�
• Hiding n�o�p�n�q	r	s�t<v����'oTq����^���9yLzO{P} ~ �����S��oTq5��n	� �5n �Zn�o�p�n�q	r	s�t<v)y9z�{�}9�

��� t ������
• Enablingn�o�p�n�q	r	s�t<v>y u���� y w zO{P}Q~��(�Fq!�/t���	Hq���	Gq!�Nr	� n@�k��n��Zn�o�p�n�q	r	s�t<v�y u zO{P}����

�(�Fq!�/t���	Gq � ���!
��Tr	� n-� ��n��Zn�o�p�n�q	r@s'tNvay w zO{P}9�(v
���9t �~#"

n�o�p�n�q	r@s'tNvayMu ��� y0w�zO{P}Q~��(�Fq!�/t���	Gq � ���!
��Tr	� n-� ��n��Zn�o�p�n�q	r@s'tNvay0w-zO{P}9�
���9tU~#"

In this case, if " action exists in some trace, it will be found at the end of the execution
of B2. All other " actions are transformed into internal actions by the enable operator.

• Disablingn�o�pSnhq	r	s�t<v�yMu-� � ymw-zO{P}Q~���� o(�'n�t$��	Gq �
	Hq��<r	��n@���5n � n�o�pSn�q@r	s'tNv>y u@zO{P}9�%�
��� o(��n�t���	Hq�� ����
���r	��n	� �-n��Zn�o�p�n�q	r	s�t<v)y w zO{P}��(v

• Parallelism n�o�pSnhq	r	s�t<v�y u �C�C� y w z�{�}D~���� p�t���t�	&	Gq'	(�
	Gq!�<r@� n@���5n��Zn�o�pSnhq	r	s�t<v>y u z�{�}9�%�
��� pStT��t$	)	Hq'	*� ����
���r	��n@�k��n��Zn�o�p�n�q	r@s'tNv�y0w�z�{�}��

n�o�p�n�q	r@s'tNv�yMu5� �*��� �O� y0w�z�{�}Q~���� pStT��t$	)	Hq'	*�
	Hq!�Nr	��n@� ��n��Zn�o�p�n�q	r@s'tNvayMu@zO{P}9�'�
��� pStT��t$	)	Hq'	*� ����
���r	��n@�k��n��Zn�o�p�n�q	r@s'tNv�y w z�{�}��

n�o�p�n�q	r	s�t<v�y u �W� y w z�{�}Q~���� pStT��t$	)	Hq'	*�
	Hq!�Nr	��n@� ��n��Zn�o�p�n�q	r@s'tNvay u zO{P}9�'�
��� pStT��t$	)	Hq'	*� ����
���r	��n@�k��n��Zn�o�p�n�q	r@s'tNv�y w z�{�}��

• Parallelismo�pSn�q@r	s'tNv�y u �Pp�y w z�{�}D~���� pStT��t$	)	Hq'	*�+	Gq!�<r@� n@���5n��Zn�o�pSnhq	r	s�t<v>y u z�{�}����
��� p�t���t�	&	Gq'	(������
���r	��n����5n �Zn�o�p�n�q	r@s'tNv�y w z�{�}9�

,7�Gr-���Pp � ���W�C� v�� �.��� �|��v5�����
• ProcessInstantiation

n�o�p�n�q	r@s'tNvSp>� 
 u v!�C�C�Wv/
10��fz�{�}Q~32<� ���#n�rOtT�4�-q5� n ���5n�� n�o�pSn�q@r15|t�6HvPy87�{�}96;:�v
���=<5pa�.�<u�v!�C�C�Wv�� 0 �?> ~,y*v@,A�<q!��q�>
t�{�t 6 � ��
�u�{��<u!v��C�W�Cv/
 0 {1� 0 �(vPt��#o

} 6 ~ 2 � 6 �9�CB/}�v��@{1� 6 B ��
 u {�� u v!�C�C�Wv/
 0 {1� 0 � :
• Relabeling

n�o�p�n�q	r@s'tNvks'yLzP� 
 u {1� u v��C�W�Cv/
D0K{1��0K�fz�{�} ~ 2 � ��q%	 t$�@q'	'��n��k��n��Zn�o�pSnhq	r 5 tE6 v)y 7 {�}96 : v
,��<q���q t�{�tF6#� ��
 u {�� u v!�C�C�Wv/
D0K{1�$0<��v�tT�/o

} 6 ~ 2 � 6 �F�+� }�v��	{�� 6 � ��
�u�{1�<u�v��W�C�Wv/
 0 {�� 0 � :
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Goal Oriented Inference Rules

What has been described so far were the operations necessary to analyze the behaviour
B; extracting from it a set of SDP, i.e. the set of traces of B likely to reach the targeted
action. Some of those traces may not be executable. For instance, although sdpset(a,b;exit
|| a;exit) finds [parallelˆright.prefix] as the set of SDP, [parallelˆright.prefix] could not be
executed due to the lack of synchronization.
This leads us to the next step in goal oriented execution, namely the use of the SDPs

in the application of inference rules. We shall now introduce the Goal Oriented Inference
Rules. They are consistent with the usual inference rules, but differ in the following respects:

1. they define the derivation of a behaviour B not only on a single action, but also on traces
2. they do not describe all possible derivations of a behaviour B in general, but only those
that comply with the SDP imposed on them

With the same restrictions as those imposed to the use of the function sdpset, the relations� and � w are defined by:

1. s�t<vPy9z�{�} ~��Gt u v!�C�C�WvPt 0�� � y 6 , with a = 6��96 or a = an, iff y ~��Gt u v!�C�C�WvPt 0�� � y 6 such
that 	 t�
�v
��� ��� �)v t�
 �� }

2. s��Ht1u!v��W�C�Cv�t 0 �	vPy9z�{�}D~,r � w y 0 iff y ~����@u!v��C�W�Cv������ � y 0 , with an = bm, and m ≥ n, such
that � �	u�v��C�W�Cv����������ks���t�u!v��C�W�CvPt 0 ��z ~���t�u�v!�C�C�WvPt 0 � , and 	 o ���/�	u!v��C�W�Cv����������ks �Gt�u!v��C�W�CvPt 0 ��zPv�o ��
} . An alternative definition is s���t u v!�C�C�WvPt 0���vPyLz|{P} ~Qr � w y�0 iff s�t�
GvPy!
�z�{hs�} � ��t�
���z+~
r"
 � y#
%$ u for s"�&�J�'�J� z , and r ~ r u)( �C�W� ( r�0

3. s����PvPyLzO{P} ~ r � w y 0 iff y ~ �*� � y 0 or y ~ ��� u v��C�W�Cv�� 0 � � y 0 , such that
	 � 
 v+�,� �-� ��v9� 
 �� }

Informally, the relation � defines the derivation of behaviour B on a sequence of actions�Gt�u!v��C�W�CvPt 0 �	v#�'./� with an being the targeted action (or any action not in A if a = ’-’ ); while� w defines the derivation of behaviour B on a sequence of actions t, such that t contains a
predetermined series of actions �Ht u v��C�W�CvPt 0 �	vk�&.0� .
Note that relation 1 (on which the other two relations are defined) requires that all execu-

tion traces be generated, and only those satisfying the restriction be kept. Computationally,
this is usually infeasible.
We provide an efficiently computable definition by means of goal-orientedinference

rules, where the trace generation is guided by the static derivation paths. Thus, we
redefine the relation s'tNvPy9z�{�} ~ �Gt u v��C�W�CvPt 01� � y 6 as s�n�o�p#vPyLzO{P} ~ �Gt u v��W�C�WvPt�01� � y 6
for n�o�p � n�o�pSnhq	r	s�t<vPy9z�{�} . For the purpose of readability, we overload the notation by
allowing to use either action symbols or SDPs equivalently. The formal definition of the
latter relation is given below. The behaviours Bi used in our examples refer to the behaviour
tree in figure 4. For example B3 identifies the behaviour a;b;stop [] b;c;stop.
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Base Case

���������
	���
����������
(1)

When the end of the SDP is reached, an empty trace and the current behaviour expression
are returned.

Successful Termination

����������� ���"!$#&%('�	���
)�*��+,����-.'�/10
(2)

The action
+
can only appear at the end of a trace.

Action Prefix

�324�5�6	��5
7�8��� �:9
; �5� <�=>��?"�3�A@B2C���AD�E5�
	��5
7����DF@G�5�H��� 9 (3)

This rule accumulates the actions in the derived trace. For example, taking behaviour B7 =
(b; c; stop) in figure 4, the relation

�5� <�=>��?"�3�A�3<I=J��?K�3���3�A�6L1	��JM4NO���P� � 9
will be satisfied

with
�
�Q��R$��SC�

and
� 9 �T�:UV�W-.'�/>0

.

Nested

�324�5�6	��5
7�8��� � 9
X �5�ZY[��2$�5��\�@�2$�3�����
	.	��5
7�8��� � 9 (4)

Nesting has no effect on the derived trace.

Hiding

�324�5�6	��5
7�8��� � 9
] ���B^I�3\_�1@B2C���"`�%ba_!dcPef%hgi�
	���
7�j�&k3M>clemNP�Q`�%na_!dcleo%pgi� 9 (5)

The trace generated by the hide operator is filtered against the list of hidden gates (
�&k3MqclemN

).
For example, let

�r�8`I%na_!�DF�sRj%pg8SqE5DFE5\�E5-.'�/>0
, then

�5��^���\_�>��<�=>��?"�3�A�3<I=J��?K�3���3�K�
	��4M4Nt�8���
� 9
, will be satisfied with

�u�v�wSx�5D��4k�MqDy�sR�Nz�v�wSC�
and

� 9 �7`�%ba_!{Dy�sR|%hgz\�E�-.'�/10
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Enabling

�324�5����	���
7�8���d� �����
� ��� ��Y"D�R��w���	�w��?y��@�2$���"����
�
8�
�C	��5
7�8���d� ������
�
8��� (6)

�324� � � 	��5
7�8� � �Q� ��� �
�3=q�5� � 	��4� 
�� ��M$���� N��8Mq+&Nx	�	�� � � � � ���

� ��� ��Y"D�R��w����=q�	�F^&��@�2$�3�K� � 
�
j� � 	���
)�8� � k3Mq+&N�� � � ��� ���
� ���5^ =�� 2q\$<I2J�����3+q�5� � 	

(7)

The first rule states that if the goal action is in B1 then the resulting trace will be a trace
t1 generated from B1 guided by the remainder SDP s, and the resulting behaviour will be
B11>>B2 where B11 is the behaviour B1 after trace t1. The second rule states that if the goal
action is in B2 then the resulting trace will be the concatenation of trace t1 excluding the

+
action at the end, and trace t2, where t1 is a trace from B1 leading to

+
and not including

the target element (i.e.
���� ) nor any element in A, and t2 is a trace from B2 guided by the

remainder SDP s. The resulting behaviour will simply be behaviour B2 after trace t2.
For example, let behaviour

� � DFEsR�E�!$#&%h'�
�
uSqE�!$#&%h'
, then the set of static derivation paths2q\$<�2>�����3+q�5�6	��4M4N8� M&����Y"D�R��w���B=q�	�F^&���3<�=>��?"�3�A�s���F���w�3N

. Therefore the relation
��+x�A�
	��4M4Nt�8� �

� 9
is defined as

�5���$YKD R��w���B=q�	�F^&�s��<�=>��?"�3�A�s���F��� �3�K�6	��4M4No���P� � 9
which will match rule (7)

where the following relations must hold:

1.
�5� <�=>��?"�3�A�s���F���w�3� SqE�!$#&%h'�	��4M4N � ���o� �z=��

2.
�3+q� DyE�R$E�!�#_%p'�	��J��M$� �� N��8Mq+_Nx	z� ���
� �z=��

The first relation will be satisfied with
��� � ��Sq�5+,�

and
�z=�� � - '�/10

. The sec-
ond relation then becomes

��+x� DFEsR�E�!$#&%h'�	��4M4N � � � � �z= �
, which will be defined

as
�5� <�=>��?"���[��<�=>��?"�3�A�s���F���3�w� DyE�R$E�!�#_%p'�	��JM4N � � � � �z= �

, where
� <I=>�$?K�3�A�3<�=>��?"���[���$�F�������

2q\$<�2>�����3+q�5DyE�R$E�!�#_%p'�	��JM4N
, and will be satisfied with

� � �Q��DF�sR��5+>�
and

�z= � � -.'�/10
. There-

fore the original relation
�5� ��YKD R������B=x� �F^_���3<I=>�$?K�3�A�s���F��� �3�K�
	��4M4N � �z� � 9

, will be satisfied
with

� � ���Ik3Mq+_N!�Q���P� �3Dy��R$�5+q�&k3Mq+_N�� �3Sq�5+>�d� �wDy��R$�5Sq�5+>�
and

� 9 � �z=�� � -.'�/>0

Disabling

��24�5� � 	��5
7�j� � ��� ��� �A���� � +
" ���G\4�32qD�R��w���#����?y��@B2C���"� � �$
j� � 	���
)�8� � � � ��� (8)

��24�5���$	��5
7�j���d���������A� � �&%� +
' �5�G\4��2xD�R������(�w��?y��@�2$���"���C�(
 ���C	��5
7�8���d�Q�����x�(
 ��� (9)

�324�5� � 	���
)� � � ��� ��� �
�5�3�5�5� � 	��J� 
�� M$� �� N)� Mq+_Nq	 � � � � � � ���

* ���G\4�32qD�R��w���B=q�	�F^&��@�2$�3�A� � �$
8� � 	���
)�8� � � � � �Q� ���
(10)

The first and second rule handle the case where the goal action is in B1. Let B11 be the
behaviour B1 after trace t1 guided by the remainder SDP s. The resulting behaviour expression
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of the above rule will be B11, namely stop, if trace t1 ends with
+
; otherwise the resulting

behaviour will be B11[>B2. The third rule states that if the search is guided to the right
behaviour B2, then the resulting trace will be a trace t1 concatenated to trace t2, where t1
is any trace derived from B1 with length ≥ 0 and not including actions in


�� M$� �� N
, and t2

is generated from B2 guided by the remainder SDP s. The resulting behaviour will be B2

after trace t2, namely B21.
For example, considering behaviour B2 in figure 4 where

2q\$<�2>�����3Sq� ���,	��4M>R�N �
M&�Z\4�32qD R��w��� =q�	�F^&���5S$^��x��SC���p=x� �F^_���3<I=>�$?K�3�A�3<�=>��?"���_�3N

then the relation
��Sx� ���4	��4M>R�N � �P� � 9

, is
defined as

���G\4��2xD�R������ =q�	�F^&���5SC^��q�3S$��� =x� �F^_���3<I=>�$?K�3�A�3<�=>��?"��� ���A���,	��4M4R$NP�8�{� � 9
. This matches

rule (10) where the following relations must be satisfied:
1.

�5� SC^��q�3S$��� =x� �F^_���3<I=>�$?K�3�A�3<�=>��?"��� ���5�����4	��4M>R�N � � � � �z= �
2.

�5�3�5� �
	_	��JM>R$��� �� ��+,N �T� � � � �z= �

The first relation will be satisfied with
���m���w\��5S$�

and
�z= �m� -.'�/>0

; the second relation then
becomes

�������H��	,	��4M>R��5Sq�5+4N:�7���P� �z=��
, and will be satisfied with two results:

1.
� � � ���

,
�z= � � ��	 �TDFEsR�E5-.'�/>0 � �wR$E5SqE5- '�/>0

2.
� � �Q��D��

,
�z= � �W��� � R�E5- '�/>0

.
Therefore the original relation

�5� \4�32qD R������B=x� �F^_���5S$^��q�3SC���p=q�	�F^&�s��<�=>��?"�3�A�3<I=J��?K�3���3�A���4	��4M>R�Nr�
� � �:9

will be satisfied with
� � � � � � � �
�d`I!���!H� � �TM&�����q�3D��5N>��� � � �3\��5SC�

and
�:9 �

�z= � � - '�/>0
.

Selected Synchronization

��24�5� � 	���
)�8� � ��� ��� �
��� ��� ��M��{N � Mq+&Nx	5� � � 	��J� 
�� M��{N � Mq+&N>	 � � � � � � ���

� �5� <�D&=qD � ��� � �(�w��?y��@�2$�3�K� ��� ��� � � � � 	��5
7�8� ��� M��{N � � � ��� ����� ��� � � � ���
(11)

�324�5���$	���
)� ���m���������
����� � ��M��{N � Mq+_Nq	5� ����	��4� 
 � M��{N)� M�+_N>	�� ���d� � �����

� ��� <�D&=qD � �w��� ��=q�	�F^&��@�2$���A� ��� ��� � � � � 	��5
7�8� ��� M��{N � � � �Q� ����� ��� � � � ���
(12)

The inference rule with
<�D&=qD � ��� � � ����?F�

means that the desired action is in B1. Therefore
the remainder of the SDP, namely s, is the static derivation path that will guide the
inference rules to generate a trace t1 such that

��24�5����	 � ��� � �����
. In this case the

resulting trace
�t��� ��� M��{N � � �

will be valid if we can generate a trace t2 from B2 such that� ��� ��M��{N)� Mq+_Nq	 � � ��� ��M��{N)� Mq+_Nx	
and t2 does not contain any elements in the restricted set

A. This can be done efficiently using the relation:
��� ��� ��M��{N � Mq+_Nq	5�5� � 	��J� 
�� M��{N � Mq+&N>	 � � � � � � ���

For example, consider behaviour B0 in figure 4. We have
2q\$<�2>�����3Sq�5���,	��4M>R�N �)M&� <�D&=qD � �w��� �(�w��?y���5YA�$2$�5��\��5\4�32qD�R��w��� =q�	�F^&���5S$^��x��SC��� =q�	�F^&���3<�=>��?"�3�A�3<I=>�$?K�3���3�

� <�D&=qD � �w��� ��=q�	�F^&���5S$^��x��SC���p=x� �F^_���3<I=>�$?K�3�A�3<�=>��?"���[��<�=>��?"�3�_��N
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Then the relation
�3Sq� ���,	��4M>R�N � � � � 9

is defined as ([parallelˆleft, disableˆright,
choiceˆright, prefix, prefix],B0)/{b} = t

�
B’. This matches rule (11) where the following

relations must hold:

1.
�5� Y[��2$�5�$\���\4�32qD R������ =q�	�F^&���5SC^��q�3S$���p=q�	�F^&���3<�=>��?"���[��<�=>��?"�3���w� � �x	��JM>R$N:� ���m� �z=��

2.
����� � ��MqDF�5Sq�5+4N>	5�A� �qL4	��JMqDy�sR��5Sq�5+>N �v���O� � �z= �

The first relation will be satisfied with two results from the previous example:
1.

��� ���3\��5S$�5�5�z=�� � -.'�/>0
2.

� � ����DF�5\��5S$�5�5�z= � � -.'�/10

The second relation then becomes
�5�w\��5Sx� � ��MqDF�5Sx��+,N>	��A� �xL4	��4MqDF�sR��5Sx��+>N � ���O� � �z= �

or
����DF�5\��5S$� � ��MqDy��Sx�5+4N>	�� � �qL>	��4M1Dy�sR��5Sq�5+>Nf� ���
� � �z=��

The first relation will not hold since
2q\$<�2>�����3Sq� � �qL>	��4MqDF�sR$��+,NP� �

, and the second rule will
succeeds with

� � � �3DF�s�1�5Ss�5���z= � � - '�/>0
. And as a conclusion, the original relation

�5� <�D&=qD � ��� � �(�w��?y���5\4�32qD�R��w���B=q�	�F^&���5SC^��q�3S$��� =x� �F^_���3<I=>�$?K�3�A�3<�=>��?"��� ���5���>	��JM,R�NP�8� ��� 9

will hold with:
� � � � � �GDF�5S�� � � � � �3DF�5\��5Ss� � �GDF�5S�� � ��DF�s�1�5Ss�

,
� 9 � �z= � � � Dy��S�� � �z= � �

-.'�/>0 � �ZDF�5S5� � -.'�/>0
. Therefore

� � M&�wDy�5\����>��Ss�5�q���_��!J�5a"���x�5N
.

Interleave Parallelism

�324� � ��� ��� � � � 	���
7�j� ��� 9
� �324� � ��� � � � � 	��5
7�8��� � 9 (13)

The interleave operator is treated as the selected synchronization operator with an empty list
of synchronization gates.

Full Synchronization

��24� � ��� �����3� � 	 �	� ��� � 	3� � � � 	���
)�8��� � 9

 �324� � ��� � � � 	��5
7�8��� � 9 (14)

The full synchronization operator is treated as the selected synchronization operator with the
list of synchronization gates composed with the alphabet of behaviours B1 and B2.

Process Instantiation

� <|� ^ � ��@h@h@p�s^
�>��� � � �$���G=>� �bD R�� �3@B2��3�$���
	5���Pe �n	��5
 9 �j� ��� 9
� ���G�3YK2C��D&Y"S$�1@�2$�3�4<|� � ���$@p@h@h��� � ��	��5
7�j�{� � 9

� ^F��=>���Pej� � � �>^ � �$@p@h@h��� � �>^ � �

 9 ���������������! "�$#%�&�'��(*),+

(16)
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In this rule the element instance in replaced by relabel, since a process instanti-
ation relabels the behaviour of the process. Given the specification in figure 3,
suppose we want to reach action ��� without passing by ��� from the behaviour���	�
����
 ��� ���  � �  � �  ���  ����� . This can be specified by ��� �  �����
����
 ��� ���  � �  � �  ���  ����� � #�! � ��"$#�&% ' � which is defined as � ��(
)  ���
�
����
 ��� � �  � �  � �  � �  � � ��� #�! � � "*# �&% ' �  �+(
) �
�+(
)����	� ��� �  �����
�,�-
 ��� � �  � �  � �  � �  � � �.� #�! � � "
For sdp = [instance, relabel, parallelˆleft, nested, disableˆright, choiceˆright, prefix, prefix]

we have the relation ��� ��
/�
� � 
10
��23� �  �����
����
 ��� � �  � �  � �  � �  � � �.� #�! � � "4# �5%6' � that matches
rule (16) and yields to � �  � '47 ��� � � #%�  � � #�8  � � # 0  � � # (  � � # � �.� #�!98 ":# �&% ' � where s =
[relabel, parallelˆleft, nested, disableˆright, choiceˆright, prefix, prefix]. This is the same
relation we had in the previous section that resulted in:� # � � � � � #%�  � � #�8  � � # 0  � � # (  � � # � �' � # �-;=<,>�? � � �  0 � � ;@<,>�?/�	� �A� # �  � � #�8  � � # 0  ��� # (  ��� # � �
Which implies � �B!AC � �  � �  � �  ���ED  +C � �  � �  � �  ���FD "

Relabeling

� �  ' � #"� # �G% ' �H �I�KJ �+L �18 �+L�2M� �  � ' ��� ( ) ��� #"� # � � (,) � % � ' � �	� (,) �NPO � J � (,) # � � # O �  2Q2R2  ��S # O S
(15)

For example, with behaviour 'T7 of figure 4, letting
� # � ) � J � L L �FL UVL ��WX�  (���� �18 L��RU J � � O �  0 O�Y ��0
�QU J � � O �  ) J �
WZ��[  ) J ��W/�-[ �

the relation ���\J �+L �18 �+L�2M� �  � 'T7 �	� ��� # �  � � #�8  � � # 0  ��� # (  ��� # � ��� #�!�8 "P# �G%]' � matches rule (15)
where the relation � �  'T7 � #�!�8 "4# � � %6' J � must hold, as in the previous example, with:
1. � � # C �  (  �  0 D  ' � # ;=<�>�? � � �  0 � � ;=<,>�?
2. � � # C �  �  (  0 D  ' � # ;=<�>�? � � �  0 � � ;=<,>�?
Therefore the original relation �I�KJ �+L �18 �+L�2M� �  � 'T7 �	� ��� #%�  � � #�8  � � # 0  ��� # (  ��� # � �.� #�!98 "^# �_% ' �
will be satisfied with� # � �E� ��� #%�  � � #�8  � � # 0  ��� # (  ��� # � �' � # �-;=<,>�? � � �  0 � � ;@<,>�?/�	� � � # �  ��� #�8  ��� # 0  � � # (  � � # � �
This implies � �`!�C � �  � �  � �  � � D  +C � �  � �  � �  � � D "
Limitations and Future Work
We foresee several applications for the concept of goal-oriented execution:

• It offers a very attractive alternative to the two execution modes mentioned in the
introduction:

— instead of manually attempting to reach an action a not immediately derivable, one
could rather ask for a list of paths leading to it
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— in a graphic environment, one could also think of successively pointing at a sequence
of LOTOS actions on the screen, thus expressing the wish of seeing a path reaching
those actions in the selected order

• It enables verification of some types of temporal logic properties, for example that a
certain action can be followed by another action.

• Because execution paths in a specification are also test cases, our method can be used
to obtain test cases corresponding to certain test intents. Similarly, the method can be
used to find preambles and postambles for test sequences.

• [vdS92] shows how goal-oriented inference rules can be used to find test cases corre-
sponding to selection criteria based on dataflow analysis..

Of course, we do not claim that the techniques proposed in this paper completely answer
these needs, however they are a step in that direction. Everything we have presented in this
paper has been implemented in Prolog. Work is currently being carried out in extending the
method to full LOTOS. This basically requires the use of narrowing techniques [RKKL85]
in order to find values for value expressions and prune infeasible paths.
Concerning the limitations, it shall be mentioned that the technique may cause the

generation of infinite traces due to the depth-first searching strategy. The breadth-first
searching strategy may resolve this problem to some extent, but is memory consuming.
The current technique still handles many cases where the existing interpreters may fail. For
example, it is able to reach action a in the following recursive processes:

� � � ��� # ��� ;=<�>�?�� � � � � �� � � ��� # ��� ;=<�>�? � � � � � � �� � �  8  0 ��� # � 8�� ;@<,>�? � �-� 0 � 8�� ��� ;@<,>�? � � 8 � � � � �  8  0 �����
as well as:

� � �  8 ��� # 8�� � � 8  "� �
which involves multiple instantiations, but it could not in:

� � � ��� # ��� �
� Y ) � � � � � �
where P[a] is instantiated an infinite number of times.
Our implementation of static derivation paths excludes all paths having more than one

appearance of an instantiation with a given gate list (this is not specified in our formal
definition of SDPs). Therefore, our tool is able to reach action a in process P given below:

� � �  0 ��� # 0 �
	 ��� ��
�
 ( � � �� � 0 ��� #�������� � ��� � ��� 0 � � � 0 ���K� � � �
��� < �( � ( ��� # ( � �
� Y )
a is found in process R, forcing the inference rule of enable to reach � in 0 � � � 0 � , whose SDP
is � ) J ��W/��[  ��
Z�
� � 
/0
�  O ��(A�  0 O�Y ��0
��U J � � O �  ) J �
WZ��[  ) J ��W/�-[ � .
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